Detection of Partially Occluded Face Using Support Vector Machines

نویسندگان

  • Sang Min Yoon
  • Seok-Cheol Kee
چکیده

Partially occluded face detection is need, because although the technology of the Automated Teller Machines and face detection is increased, we cannot control the people who wear sunglasses or mask for the crime. To reject the occluded face, we first trained the features of the normal faces and the occluded faces that wear sunglasses or mask using Principal Component Analysis and Support Vector Machines to reduce the dimension and classify eficiently. Then we decide that the detected face is normal or partially occluded face using the scheme that integrates the Principal Component Analysis and Support Vector Machines. In the experiments, we trained the 3200 normal face images that have the variations of illumination and expression and each 2900 and 4500 partially occluded face images that wear the sunglasses or mask with 60*25, and 60*35 resolution. We get the 95.2% and 98.8% partially occluded face detection ratio after face detection and 2.5% and 0% false alarm ratio from the experiments based on the Purdue University Face DB. The proposed algorithm which is incorporated the face detection system can help the security using the Digital Video Recorder System and face recognition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Empirical analysis of cascade deformable models for multi-view face detection

In this paper, we present a face detector based on Cascade Deformable Part Models (CDPM) [1]. Our model is learnt from partially labelled images using Latent Support Vector Machines (LSVM). Recently Zhu et al. [2] proposed a Tree Structure Model for multi-view face detection trained with facial landmark labels, which resulted on a complex and suboptimal system for face detection. Instead, we ad...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

On the stability of support vector machines for face detection

In this paper we study the stability of support vector machines in face detection by decomposing their average prediction error into the bias, variance, and aggregation effect terms. Such an analysis indicates whether bagging, a method for generating multiple versions of a classifier from bootstrap samples of a training set, and combining their outcomes by majority voting, is expected to improv...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002